To subtract 3-fourths from 8, we must make fourths.  To do this, 
 	
		|   break off 1 from 8, and decompose it into  | 
 		4 4 | 
    	: | 
        
 
   
(Lesson 20, Example 4.)  Therefore, 
 
      
   
   
       | "2 from
           7 is 5.    | 
       3 4 | 
        from  | 
       4 4 | 
        is  | 
       1 4 | 
       ." | 
    
    
    
   
       
       
           |   Example 2. | 
           6 − 1 | 
           2 3 | 
             =   | 
           5 | 
           3 3 | 
			 − 1 | 
            2 3 | 
             
            
         |   |     
          
         	|   | 
             =  | 
           4 | 
           1 3 | 
           . | 	
        
        
       
       
       
   
   
       | "1 from 5 is 4.    | 
       2 3 | 
        from  | 
       3 3 | 
        is  | 
       1 3 | 
       ." | 
    
    
   Example 3.   Subtracting mixed numbers.  Let us now compare this problem  
   
     
       
           |   with the previous one.  We cannot take  | 
           2 3 | 
            from  | 
           1 3 | 
           .  Therefore, we will again  | 
     
   write 
   
     
       
           |   but here we will add the  | 
           3 3 | 
            to  | 
           1 3 | 
		: | 
		 
    
   
    
    	| 6 | 
   		1 3 | 
   		  =   | 
   		5 | 
   		3 3 | 
		 +  | 
           1 3 | 
      
     |   |  
      
         |   | 
           =   | 
         5 | 
   		4 3 | 
   		. | 
   	 
 
   Therefore, 
       
       
       		|   6 | 
           1 3 | 
		 − 1 | 
           2 3 | 
             =  5 | 
           4 3 | 
			 − 1 | 
           2 3 | 
             =  4 | 
           2 3 | 
           . | 
        
    
 
 	
		| "1 from 5 is 4.   | 
 		2 3 | 
    	 from  | 
    	4 3 | 
    	 are  | 
    	2 3 | 
    	." | 
	 
 
 
 
   
     
       
           |   Break off 1 from 4.  Express it as  | 
           8 8 | 
           , and add it to  | 
            1 8 | 
       	  : | 
     
    
   
    	
    	| 4 | 
    	1 8 | 
   		  =  3 | 
   		8 8 | 
   		 +  | 
    	1 8 | 
   		  =  3 | 
   		9 8 | 
   		. | 
   	 
 
Now the mystery if any is, How does that numerator get to be 9?   
9 is the sum of the original numerator 1 and denominator 8:  
 
       
       
           | 
                Example 5.   Write the missing numerator:  9 | 
           2 5 | 
             = 8 | 
           ? 5 | 
        
        
     
       7 is the sum of denominator plus numerator:  5 + 2. 
       
       
           |   Example 6.      9 | 
           2 7 | 
            − 3 | 
           5 7 | 
             = ? | 
        
        
       
 
   
     
       
           | 9 | 
           2 7 | 
            becomes 8 | 
           9 7 | 
           .  The improper numerator 9 is the sum of the | 
        
    
    
     
       
           |   denominator and numerator of   | 
           2 7 | 
           :   7 + 2 = 9. | 
		 
    
 
 
Solution.  First, we must make the
denominators the same: 
  
   
     
       
           | We cannot take  | 
           3 4 | 
            from  | 
           2 4 | 
           ; therefore, on breaking off 1 from 6, the
            | 
        
    
    
 	
		|   fraction  | 
 		2 4 | 
    	 becomes 4-fourths + 2 -fourths = 6-fourths: | 
     
 
  
   
   
       | " | 
       3 4 | 
        from  | 
       6 4 | 
        is  | 
       3 4 | 
       .   2 from 5 is 3." | 
    
    
  
Please "turn" the page and do some 
Problems. 
or 
Continue on to the next Lesson. 
Previous Section 
 
Introduction | Home | Table of Contents  
 
Please make a donation to keep TheMathPage online. Even $1 will help. 
 
Copyright © 2001-2007 Lawrence Spector 
Questions or comments? 
E-mail:  themathpage@nyc.rr.com 
 
 |