Table of Contents | Home 
Adding algebraic fractions:  Level 2 
Back to Section 1 
   Problem 7. 
   
   To see the answer, pass your mouse over the colored area.  To cover the answer again, click "Refresh" ("Reload"). Do the problem yourself first! 
      
       
       		|   a)    | 
       		1 x | 
       		 +   | 
       		 2  3x | 
            =   | 
           3 + 2   3x | 
            =   | 
            5  3x | 
       | 
       		  b)    | 
       		 3  2x | 
       		 −   | 
       		 4  2x² | 
            =   | 
           3x − 4    2x² | 
        
        
      
       
       		|   c)    | 
       		     1      (x + 1)² | 
       		  +   | 
       		    2     (x + 1) | 
             =   | 
           1 + 2(x + 1)    (x + 1)² | 
           =   | 
           1 + 2x + 2    (x + 1)² | 
        =   | 
            2x + 3  (x + 1)² | 
        
        
     
       
       		|   d)    | 
       		     6      x(x − 1) | 
       		 +   | 
       		     2      x(x − 2) | 
             =   | 
           6(x − 2) + 2(x − 1)    x(x − 1)(x − 2) | 
        
       |   |  
			  | 
            =   | 
         6x − 12 + 2x − 2   x(x − 1)(x − 2) | 
       
       |   |  
				  | 
          		  =   | 
               _8x − 14_    x(x − 1)(x − 2) | 
       
        
       
       
           		| 
                Example 7.   Add     | 
           		     4      x² − 25 | 
		       	 −   | 
		               3         x² − 6x + 5 | 
        
        
       
       Note that we tend to say "add" in algebra, even though the operation is subtraction. 
Solution.   To construct the LCM of the denominators, we must first factor the denominators. 
        
       
        		     4      x
        		² − 25 | 
		       	 −   | 
		               3         x² − 6x + 5 | 
             =   | 
      		        _4_        (x + 5)(x − 5) | 
		       	 −   | 
		               _3_        (x − 5)(x − 1) | 
		  
		 |   |  
		 			  | 
        		  =   | 
      				 4(x − 1) − 3(x + 5)  (x + 5)(x − 5)(x − 1) | 
		     		 
		 |   |  
		 			  | 
        		  =   | 
      				_4x − 4 − 3x − 15_ (x + 5)(x − 5)(x − 1) | 
		     		 
        |   |  
		 			  | 
        		  =   | 
      				       __x − 19__       (x + 5)(x − 5)(x − 1) | 
		     		 
        
   Problem 8.   Add.   First factor each denominator. 
        
          
          		|   a)    | 
          		x 2 | 
          		 +  | 
          		  _5_   2x + 2 | 
              	  =   | 
              	x 2 | 
              	 +  | 
          		   _5_    2(x + 1) | 
           
          |   |  
   			  | 
               =   | 
              x(x + 1) + 5    2(x + 1) | 
          
          |   |  
   				  | 
             		  =   | 
              x² + x + 5  2(x + 1) | 
          
        
      
          
          		|   b)    | 
          		    1    x² − x | 
          		 +   | 
          		2 x | 
              		  =   | 
              		   _1_     x(x − 1) | 
              		 +  | 
          		2 x | 
           
          |   |  
   			  | 
             		  =   | 
             		1 + 2(x − 1)   x(x − 1) | 
          
          |   |  
   			  | 
             		  =   | 
            		1 + 2x − 2   x(x − 1) | 
          
         |   |  
   			  | 
             		  =   | 
            		 2x − 1  x(x − 1) | 
          
        
      
          
          		|   c)    | 
          		   2    x + 3 | 
          		 +   | 
          		   12    x² − 9 | 
              		  =   | 
              		   2    x + 3 | 
              		 +  | 
          		    __12__     (x + 3)(x − 3) | 
           
          |   |  
   			  | 
             		  =   | 
              		2(x − 3) + 12 (x + 3)(x − 3) | 
          
          |   |  
   			  | 
             		  =   | 
              		  2x − 6 + 12    (x + 3)(x − 3) | 
          
          |   |  
   			  | 
             		  =   | 
              		___2x  + 6___  (x + 3)(x − 3) | 
          
          |   |  
   			  | 
             		  =   | 
              		__ 2(x  + 3) __  (x + 3)(x − 3) | 
          
          |   |  
   			  | 
             		  =   | 
              		  _2_    x − 3 | 
          
        
      
          
          		|   d)    | 
          		  ___6___   x² + 5x + 6 | 
          		 +   | 
          		 ___2___  x² − x − 6 | 
              		  =   | 
              		    ___6___     (x + 2)(x + 3 ) | 
              		 +  | 
          		   ___ 2___    (x + 2)(x − 3) | 
           
          
          |   |  
          
   			|   | 
             		  =   | 
              		 6(x − 3) + 2(x + 3)  (x + 2)(x + 3)(x − 3) | 
           
          
          |   |  
          
   			|   | 
             		  =   | 
           		_ 6x − 18 + 2x + 6 _ (x + 2)(x + 3)(x − 3) | 
           
           
          |   |  
          
   			|   | 
             		  =   | 
           		_____8x − 12_____ (x + 2)(x + 3)(x − 3)
           |  
          
           |   |  
          
  			|   | 
             		  =   | 
           		  ___ 4(2x − 3) ___   (x + 2)(x + 3)(x − 3)
           |  
        
	Factor the numerator to see if anything might cancel. 
      
          
          		|   e)    | 
          		  ___3___   x² − 7x + 10 | 
          		 −   | 
          		 __2__  x² − 25 | 
              		  =   | 
              		    ___3___     (x − 2)(x − 5) | 
              		 −  | 
          		   ___ 2___    (x + 5)(x − 5) | 
           
          
          |   |  
          
   			|   | 
             		  =   | 
              		 3(x + 5) − 2(x − 2)  (x − 2)(x − 5)(x + 5) | 
           
          
          |   |  
          
   			|   | 
             		  =   | 
           		_ 3x + 15 − 2x + 4 _ (x − 2)(x − 5)(x + 5) | 
           
           
          |   |  
          
   			|   | 
             		  =   | 
      				___ __x + 19__ ___ (x − 2)(x − 5)(x + 5) | 
           
        
     
          
          		|    f)    | 
          		   ___7___    3x² − 5x + 2 | 
          		 −   | 
          		  ___4___   3x² + x − 2 | 
              		  =   | 
              		    ___7___     (3x − 2)(x − 1) | 
              		 −  | 
          		    ___ 4___     (3x − 2)(x + 1) | 
           
          
          |   |  
          
   			|   | 
             		  =   | 
              		  7(x + 1) − 4(x − 1)   (3x − 2)(x − 1)(x + 1) | 
           
          
          |   |  
          
   			|   | 
             		  =   | 
           		 _ 7x + 7 − 4x + 4_   (3x − 2)(x − 1)(x + 1) | 
           
           
          |   |  
          
   			|   | 
             		  =   | 
      				___ __3x + 11__ ___ (3x − 2)(x − 1)(x + 1) | 
           
        
       
       
	      Example 8.   Symmetrically, we can rewrite a fraction as a sum of fractions: 
       
	        
	    		a + b + c       d | 
	       		= | 
	       		a d | 
	       		+ | 
	       		b d | 
	       		+ | 
	       		c d | 
	        
 
   Problem 9.   Rewrite each of the following as a sum of fractions, and simplify. 
     
	        
	        		|   a)    | 
	    		1 + 2 + 3       6 | 
	       		= | 
	       		1 6 | 
	       		+ | 
	       		2 6 | 
	       		+ | 
	       		3 6 | 
			= | 
	       		1 6 | 
	       		+ | 
	       		1 3 | 
	       		+ | 
	       		1 2 | 
	        
 
     
	        
	        	|   b)    | 
	    		2n² − 4n + 1       n² | 
	       		= | 
	       		2n²  n² | 
	       		− | 
	       		4n n² | 
	       		+ | 
	       		 1  n² | 
	       		= | 
	       		2 | 
	       		− | 
	       		4 n | 
	       		+ | 
	       		 1  n² | 
	        
 
     
	        
	        	|   c)    | 
	    		x³ + 4x² + 2        2x5 | 
	       		= | 
	       		 x³  2x5 | 
	       		+ | 
	       		4x² 2x5 | 
	       		+ | 
	       		 2  2x5 | 
	       		= | 
	       		 1  2x² | 
	       		+ | 
	       		 2  x3 | 
	       		+ | 
	       		 1  x5 | 
	        
 
     
	        
	        	|   d)    | 
	    		x − 1 x + 1 | 
	       		= | 
	       		   x    x + 1 | 
	       		− | 
	       		   1    x + 1 | 
	        
 
       
       
           | 
                Example 9.   Simplify    | 
             | 
         
     
   Problem 10.   Simplify. 
   
    	
    		|   a)   | 
   
   		  | 
   		  =   | 
   		  | 
           =   | 
           1 6 | 
		·  | 
   		 1  10 | 
           =   | 
            1  60 | 
        
 
     
	  	
	  		|   b)   | 
	 
	 		  | 
	 		  =   | 
	 		  | 
	          =  z·  | 
	          xy   y + x | 
	         =  | 
	          zxy   y + x | 
	      
 
    
	 	
	 		  | 
			  =   | 
			x − (x + h)   (x + h)x | 
			·  | 
			1 h | 
     	 
 
	
	 
           |   | 
			  =   | 
			x − x − h   (x + h)x | 
			·  | 
			1 h | 
   
   
  
  
  
 	
 		|   d)    | 
		  | 
		  =   | 
		  | 
		  =   | 
		(x + 1)(x − 1)          x² | 
		·  | 
		  x   x − 1 | 
             =   | 
           x + 1    x | 
     
 
Or, on recognizing the numerator as the Difference of Two Squares: 
 	
 		|   | 
		  | 
		  =   | 
		  | 
		  =  1 +  | 
		1 x | 
		 =   | 
		x + 1    x | 
     
 
 	
 		|  e)    | 
		  | 
		  =   | 
		  | 
           
        
     |   |     
    
    	|   | 
 		  =   | 
 		(a + b)(a − b)         ba | 
		·  | 
            ba   a + b | 
             
     |   |     
            
            |   | 
             =   | 
           a − b | 
     
 
 
 
Next Lesson:  Equations with fractions 
 
Table of Contents | Home 
 
Please make a donation to keep TheMathPage online. Even $1 will help. 
 
Copyright © 2001-2007 Lawrence Spector 
Questions or comments? 
E-mail:  themathpage@nyc.rr.com 
 
 |