| 
   
      
				
				
				
 28 MULTIPLYING AND DIVIDING HERE IS THE RULE for multiplying radicals: 
 It is the symmetrical version of the rule for simplifying radicals. Problem 1. Multiply. To see the answer, pass your mouse over the colored area.  
 
 
   Example 1.   Multiply  ( Solution. The student should recognize the form those factors will produce: 
 Problem 2. Multiply. a)   ( b)   (2 c)   (1 +  d)   ( 
   Problem 3.   (x − 1 −  a) What form does that produce? 
			  
The difference of two squares.  x − 1 is "a."   b) Multiply out. 
 Problem 4. Multiply out. 
 Dividing radicals 
 For example, 
 Problem 5. Simplify the following. 
 Conjugate pairs The conjugate of  a +  
   Example 2.   Multiply   6 −  Solution. The product of a conjugate pair -- (6 −  -- is the difference of two squares. Therefore, (6 −  When we multiply a conjugate pair, the radical vanishes and we obtain a rational number. Problem 6. Multiply each number with its conjugate. a)   x +  b)   2 −  
 d)   4 −  Example 3. Rationalize the denominator: 
 Solution.   Multiply both the denominator and the numerator by the conjugate of the denominator; that is, multiply them by 3 −  
 The numerator becomes 3 −  
 Problem 7. Write out the steps that show the following. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Problem 9. Here is a problem that Calculus students have to do. Write out the steps that show: 
 In this case, you will have to rationalize the numerator. 
 
 Next Lesson: Rational exponents Please make a donation to keep TheMathPage online. Copyright © 2001-2007 Lawrence Spector Questions or comments? E-mail: themathpage@nyc.rr.com  | 
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||