An Approach

to

C A L C U L U S

Table of Contents | Home

13

DERIVATIVES OF
INVERSE TRIGONOMETRIC FUNCTIONS

The derivative of y = arcsin x


IT IS NOT NECESSARY to memorize the derivatives of this Lesson.  The student, rather, should know now to derive them.

In Topic 20 of Trigonometry, we introduced the inverse trigonometric functions.

In particular, we saw:

y = arcsin x   implies   sin y = x.

And similarly for each of the inverse trigonometric functions.

Problem 1.   If  y = arcsin x, show:

To see the answer, pass your mouse over the colored area.
To cover the answer again, click "Refresh" ("Reload").
Do the problem yourself first!

Begin:

  y = arcsin x
implies       
  1)   sin y = x.
 
  Therefore, according to the Pythagorean identity a':
 
  cos y =
 
=
  according to line 1).

We take the positive sign, because cos y is positive for all values of y in the range. (Topic 20 of Trigonometry.)  For a similar reason, all the derivatives that follow will have a positive sign.

Problem 2.   If  y = arcsec x, show:

Begin:

  y = arcsec x
implies       
  sec y = x.
 
  Therefore, according to the Pythagorean identity b:
 
  tan y =
 
    =

Again, we take the positive sign. tan y is positive for all values of y in the range. (Topic 20 of Trigonometry.)

The derivative of y = arcsin x

Here is the proof:

  y = arcsin x
  implies  
  sin y = x.
  Therefore, on taking the derivative with respect to x:
  = 1;
  =
  =

according to Problem 1.

Note:  We could have used the theorem of Lesson 9 directly:

We will use that theorem in the proofs that follow.

Problem 3.   Calculate these derivatives.

  a)    d 
dx
arcsin x² =
  b)    d 
dx
x² arcsin x =
  c)    d 
dx
=

The derivative of y = arccos x

The derivative of  arccos x  is the negative of the derivative
of  arcsin x.  That will be true for each pair of cofunctions.

The derivative of  arccot x  will be the negative
of the derivative of  arctan x.

The derivative of  arccsc x  will be the negative
of the derivative of  arcsec x.

For, beginning with arccos x:

The angle whose cosine is x is the complement
of the angle whose sine is x.

arccos x  =  π
2
 − arcsin x.

cos α = sin β. Therefore, if α is the angle whose cosine is x, it is the complement of β, the angle whose sine is x.

And similarly for each pair of cofunctions.

Since the derivative of  π
2
 is 0, the result follows.

Problem 4.   Calculate these derivatives.

  a)    d 
dx
arccos  x
a
 = 
  b)    d 
dx
x arccos 2x  = 

The derivative of y = arctan x

 d 
dx
  arctan x  =       1    
1 + x²

First,

y = arctan x   implies   tan y = x.

Therefore, according to the theorem of Lesson 9:

 
  Lesson 12,
 
  , according to the Pythagorean identity b, 
 
 

Which is what we wanted to prove.

Therefore, the derivative of  arccot x  is its negative:

 d 
dx
  arccot x  =  −      1    
1 + x²

Problem 5.   Calculate these derivatives.

  a)     d 
dx
arctan (ax²)  =      2ax    
1 + (ax
  b)     d 
dx
arccot  x
a
 =     −a   
a² + x²
  c)     d 
dx
arctan  2
x
 =     −2   
x² + 4
  d)     d 
dx
arccot 2x  =     −2   
4x² + 1

The derivative of y = arcsec x

Again,

y = arcsec x   implies   sec y = x.

Therefore, according to the theorem of Lesson 9:

 
  ,   Lesson 12,
 
    according to Problem 2.

This is what we wanted to prove.

The derivative, therefore, of  arccsc x  is its negative:

 d 
dx
  arccsc x  =  − 

Problem 6.   Calculate these derivatives.

  a)     d 
dx
arcsec  x
a
 = 
  b)     d 
dx
arcsec  1
x
 = 
  c)     d 
dx
arccsc 2x  = 
  d)     d 
dx
 = 

Next Lesson:  Derivatives of exponential and logarithmic functions


Table of Contents | Home


www.proyectosalonhogar.com